From time
to time high frequency stock prices data is needed even for less developed CEE
stock markets. I needed high frequency prices for CEZ (a Prague Stock Exchange
listed company). With this task and having Python I wrote a brief code for
extracting the data (the final piece of code is saving the data):
import urllib
def create_url(ticker):
base_url =
'http://www.pse.cz/XML/ProduktKontinualJS.aspx?'
search_query = 'cnpa={}'.format(ticker)
search_url = '{}{}'.format(base_url,
search_query)
return search_url
def clean_url(url):
cleaned=urllib.urlopen(url).read().split("function
createOnlineChart(divName)")[0]
for character in ['k:', 'o:', 'd:new Date',
'{', '}', '\r\nvar chartDataOL =', '[', ']', '(', ')', ';', ' ']:
if character in cleaned:
cleaned=cleaned.replace(character,'')
return cleaned
if __name__ ==
'__main__':
ticker='4169' # '4169' CEZ, '6407' Erste
Group Bank, '4171' Komercni Banka, '4174' O2, '6816' NWR, '4254' Philip Morris
CR
url=create_url(ticker)
cleanurl=clean_url(url)
with open ("trades.txt",
"w") as f:
f.write(cleanurl)