Monday, 22 September 2014

Romanian Equities: Copula and Extreme Value Theory for Modeling Market Risk

Background:
Before trying to bring more light to the definition and use of copula, I’ll start with the very basic statement that uncorrelatedness does not imply independence, while independence implies noncorrelation. This is very well explained by Mandelbrot in his book “The (mis)Behaviour of Markets” (with co-author Richard L. Hudson) – the key is in the distinction between size and direction of price movements and of course volatility clustering (large changes tend to be followed by large changes at ANY direction and small changes – followed by small changes at ANY direction. Note that here we do not specify the direction, but the size. And it is the size not direction that is important in analyzing co-movements. Correlation is not an adequate measure of dependence (a flaw of correlation is the normal distribution assumption; financial time series are not normally distributed – there are either too small or too large deviations from the average) and it is dependence that matters in risk management.

The formal definition of copula  “multivariate distribution function with uniformly distributed marginal” (Embrechts, Lindskog and McNeil, Modelling Dependence with Copulas and Applications to Risk Management) is a bit more technical and needs further clarification. The very basic of the copula is Sklar’s Thereom that  claims a copula can be derived from any joint distribution functions, and the opposite is true – namely any copula can be combined with any set of marginal distributions to result in a multivariate distribution function. The very heart of the copula is the separation of the marginal behavior and the dependence structure from the joint distribution.

There are many copulas – the most widely used are Gaussian and Student’s t, but there are also Archimedean type (Gumbel, Frank, Clayton).

Of course, as every model, copula has its limitations and in some cases can cause more troubles than the value-added from its use.

Extreme Value Theory approach was explained in the previous post. In this material, the EVT is based on calibrating Student’s t copula on standardized residuals from a autoregressive (mean)-GARCH (variance equation) model.  After that given the parameters of the Student’s t copula, jointly dependent stock returns are simulated by first simulating the corresponding dependent standardized residuals. The purpose of the whole exercise is to estimate Value-at-Risk (VaR) of the portfolio.  

Results:
Daily observations for the period Sept 3, 2012 – Sept 17, 2014 (511 daily returns for each company) of fourteen Romanian stocks are used (Fondul Proprietatea, OMV Petrom, Transgaz, Transelectrica, Banca Transilvania, BRD-GSG, Bucharest Stock Exchange, Biofarm, Antibiotice, SIF1, SIF2, SIF3, SIF4 and SIF5) are used. These stocks are combined in a hypothetical equally-weighted portfolio. The charts below present: (1) how extreme portfolio changes are during the analysed period; (2) portfolio performance.


The daily VaR at three levels of significance (1%, 5% and 10%) estimated under copula+EVT approach (together with max daily gain/loss), as well as VaR under multivariate normal distribution are reported below (10,000 daily simulations were run). Additionally, the individual stocks VaR and Expected Shortfalls at 5% level of significance are presented.






This publication is for information purposes only and should not be construed as a solicitation or an offer to buy or sell any securities.

1 comment:

  1. Casino de L'Auberge de Casino de LA. de la Casino de L'Auberge de Casino de L'Auberge
    Casino de L'Auberge de Casino de L'Auberge 1등 사이트 de Casino de L'Auberge de Casino de L'Auberge de Casino septcasino de L'Auberge de Casino de L'Auberge de Casino de Casino de L'Auberge 1xbet app de Casino de

    ReplyDelete