Thursday, 24 March 2016

Romanian Equities: Python-based Risk Optimization

I always wanted to apply the previously mentioned in this blog risk optimization techniques to a market that is not extensively researched from risk perspective. Romanian stock market, for instance. Now, that I have some time (and hopefully I will have time to follow the development of the model portfolio) I am providing the results. Previous posts on this blog have already outlined steps and underlying idea about risk optimization.

So, directly to implementation: I use a short period of time: Jan 21, 2015 – March 21, 2016 (I usually tend to work with longer period but for this post I decided to narrow the sample). Raw stock prices are updated for stock dividends but also for cash dividends (i.e. prices before the ex-dividend days are adjusted) so I am avoiding breaks in price series data.

The portfolio amount is RON1.0 mln. I work with 99% confidence interval.




Results from optimization:

One-day 99% VaR:
Portfolio VaR (equal weighted): RON20356.59 
Optimal VaR (optimized weights): RON18146.25


First, I am standardizing daily returns (by subtracting the mean from the daily return and then normalizing the result by the standard deviation) to yield number of standard deviations from the mean, i.e. showing how “unusual” are the daily returns during the analysed period. 


In terms of Python code:

import pandas as pd
import numpy as np
from numpy import *
import matplotlib.pyplot as plt
import scipy.optimize as scopt
from scipy.stats import norm

%matplotlib inline

Value=1e6 # RON1,000,000
CI=0.99 # set the confidence interval

data_all=pd.read_csv('RO.csv', delimiter=',') #database contains also a trading day
data=data_all.ix[:,1:14] #here I exclude the day to calculate returns

tickers =['SNG', 'SNP', 'TGN', 'TEL', 'BRD', 'TLV', 'FP', 'EL', 'SIF1', 'SIF2', 'SIF3', 'SIF4', 'SIF5']
numbers=len(tickers)

ret=data/data.shift(1)-1 # calculate the simple returns
ret=ret[1:] # remove first row since it contanins NA

covariances=ret.cov() #gives the covariance of returns
variances=np.diag(covariances) #extracts variances of the individual shares from covariance matrix
volatility=np.sqrt(variances) #gives standard deviation
annualized_ret=ret.mean()*252
annualized_vol=ret.std()*sqrt(252) #anualized volatility

weights = np.ones(data.columns.size)/data.columns.size #starting point is equal weighted portfolio
weights

# 1. Calculate the standardized returns
standardized=(ret-mean(ret))/std(ret) #standardized returns
day=pd.DataFrame(data_all['Day'][1:]) #takes the trading day from the database
data2=pd.DataFrame.join(day, standardized)

# We can plot the standardized returns, for instance here is the chart for Romgaz (SNG):
 data2.plot('Day','SNG')
plt.xlabel('Day')
plt.title('Romgaz')
plt.xticks(rotation=20)
plt.ylabel('number of standard deviations from average')


# 2. Now heading for the real exercise
Pf_variance=np.dot(weights.T,np.dot(ret.cov(),weights)) #Portfolio variance
Pf_volatility=np.sqrt(Pf_variance) #Portfolio standard deviation

Moneyvariance=np.square(Value)*Pf_variance
Moneyvolatility=np.sqrt(Moneyvariance)

covariance_asset_portfolio=np.dot(weights.T,covariances)
cov_money=np.multiply(covariance_asset_portfolio,Value)
beta=np.divide(covariance_asset_portfolio,Pf_variance)

def VaR():
    # this code calculates Portfolio Value-at-risk (Pf_VaR) in RON-terms and Individual Value-at-risk (IndividualVaR) of shares in portfolio.
    Pf_VaR=norm.ppf(CI)*Moneyvolatility
    IndividualVaR=np.multiply(volatility,Value*weights)*norm.ppf(CI)
    IndividualVaR = [ 'RON%.2f' % elem for elem in IndividualVaR ]
    print ('Portfolio VaR: ', 'RON%0.2f' %Pf_VaR)
    print ('Individual VaR: ',[[tickers[i], IndividualVaR[i]] for i in range (min(len(tickers), len(IndividualVaR)))])

VaR()


def marginal_component_VaR():
     # this code calculates Marginal Value-at-risk in RON-terms and Component Value-at-risk of shares in portfolio.
    marginalVaR=np.divide(cov_money,Moneyvolatility)*norm.ppf(CI)
    componentVaR=np.multiply(weights,beta)*Moneyvolatility*norm.ppf(CI)
    marginalVaR = [ '%.3f' % elem for elem in marginalVaR ]
    componentVaR=[ 'RON%.2f' % elem for elem in componentVaR ]
    print ('Marginal VaR:', [[tickers[i], marginalVaR[i]] for i in range (min(len(tickers), len(marginalVaR)))])
    print ('Component VaR: ', [[tickers[i], componentVaR[i]] for i in range (min(len(tickers), len(componentVaR)))])

marginal_component_VaR()


def VaR(weights):
    return norm.ppf(CI)*np.sqrt(np.square(Value)*(np.dot(weights.T,np.dot(ret.cov(),weights))))


def minVaR(VaR):
    nstocks = data.columns.size
    bounds = [(0.,1.) for i in np.arange(nstocks)] #non-negative weights
    constraints = ({'type': 'eq',
                        'fun': lambda weights: np.sum(weights) - 1}) #sum of weights to equal 100%
    results = scopt.minimize(VaR, weights,
                                 method='SLSQP',
                                 constraints = constraints,
                                 bounds = bounds)
    result_weights=np.round(results.x, 4)
    result_weights= [ '%.8f' % elem for elem in result_weights ]
    new_VaR=VaR(results['x'])
             
    print ('Optimal VaR: ', new_VaR)
    print ('Optimal Weights: ', [[tickers[i], result_weights[i]] for i in range (len(tickers))])

minVaR(VaR)
beta

This publication is for information purposes only and should not be construed as a solicitation or an offer to buy or sell any securities.

No comments:

Post a Comment